Universal Arrows to Forgetful Functors from Categories of Topological Algebra
نویسندگان
چکیده
We survey the present trends in theory of universal arrows to forgetful functors from various categories of topological algebra and functional analysis to categories of topology and topological algebra. Among them are free topological groups, free locally convex spaces, free Banach-Lie algebras, and more. An accent is put on relationship of those constructions with other areas of mathematics and their possible applications. A number of open problems is discussed; some of them belong to universal arrow theory, and other may become amenable to the methods of this theory.
منابع مشابه
On categories of merotopic, nearness, and filter algebras
We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...
متن کاملSubcategories of topological algebras
In addition to exploring constructions and properties of limits and colimits in categories of topological algebras, we study special subcategories of topological algebras and their properties. In particular, under certain conditions, reflective subcategories when paired with topological structures give rise to reflective subcategories and epireflective subcategories give rise to epireflective s...
متن کاملQf Functors and (co)monads
One reason for the universal interest in Frobenius algebras is that their characterisation can be formulated in arbitrary categories: a functor K : A → B between categories is Frobenius if there exists a functor G : B → A which is at the same time a right and left adjoint of K; a monad F on A is a Frobenius monad provided the forgetful functor AF → A is a Frobenius functor, where AF denotes the...
متن کاملTopological Functors as Total Categories
A notion of central importance in categorical topology is that of topological functor. A faithful functor E → B is called topological if it admits cartesian liftings of all (possibly large) families of arrows; the basic example is the forgetful functor Top→ Set. A topological functor E → 1 is the same thing as a (large) complete preorder, and the general topological functor E → B is intuitively...
متن کاملSpectral triples of weighted groups
We study spectral triples on (weighted) groups and consider functors between the categories of weighted groups and spectral triples. We study the properties of weights and the corresponding functor for spectral triples coming from discrete weighted groups.
متن کامل